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INTRODUCTION 

The purpose of this research study is to develop a general method for the 
application of accurate and efficient adaptive gridding techniques to elliptic grid 
generation. Our goal is to develop a method that retains all the features of the 
robust solver pioneered by Thompson, Ref. [ 11, but which can incorporate a wide 
variety of adaptive strategies, such as first and second derivative function adaption. 
The method developed in the present paper is of this type, and it will be shown that 
it approximates high gradient functions very well, and extends to multi-dimensions 
in a direct fashion. In order to show the accuracy and usefulness of the techniques 
developed a series of examples will be presented in one and three space dimensions, 
which exhibit that the present methods can accurately approximate high gradient 
functions. These examples are independent of the efficiency and convergence of the 
transport equation algorithms, and offer a true test of adaptive gridding methods 
potential (although the positive or negative interaction of adaptive methods with an 
algorithm should not be overlooked). It will also be pointed out that grid adaption 
has its greatest benefits for problems where there is an asymptotic steepening of the 
dependent variable, such as shocks and flames. Smooth function variation is more 
efficiently treated by higher order methods such as finite element techniques. 

The paper will begin with a derivation of the basic method of approach in one 
dimension, and it will be tested for accuracy and flexibility against a known 
asymptotic function. In many previous studies there has not been enough testing of 
the adaptive techniques for accuracy, and many investigators have only been 
concerned with the formulation of an adaptive method. In any real problem of 
function approximation there are many practical problems of normalization and 
free constant optimization which must be carried out to obtain good results. After 
the method has been shown to give promising results for the one-dimensional case, 
it will then be developed for three-dimensional applications and examples given. It 
is the present authors opinion that adaptive methods offer the hope of significant 
improvement in the future for numerical simulation of fluid flow and other 
phenomena that have asymptotic function variation in their solutions. 
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BASIC METHOD OF APPROACH 

The starting point for this new approach has been the Poisson equation for grid 
generation that has been well described in Ref. [ 11. This equation for one space 
dimension is 

5.r.v = P(5)> (1) 

where P(t) is a source term which has been used in the past to impose such desired 
properties as grid expansion from a boundary surface or orthogonalization near a 
boundary surface. The above equation can be inverted to give a standard form, 
which is useful for solving for the unknowns x as a function of t: and is given as 

x5< = -V’IJ2) xc, 

where J is the jacobian of the transformation and is given by 

(2) 

J= 5,. 

The purpose of grid adaption in the present method is to find functions for P 
which adapt the grid on properties of the solution and still retain the known 
attributes of the above Poisson equation. In general, it is desirable to define a 
weighting function W, such that the physical change in x is small when w  is large, or 
functionally 

wxg = C (constant). (3) 

The combination of Eqs. (2) and (3) yields 

xc< = -(WC/w) X<) where P = J2wt/w. (4) 

In order to be able to solve an equation such as (4) for realistic conditions there 
must be restrictions put on P which depend on the choice of w. These conditions 
will now be derived and sample solutions obtained. 

If a central difference approximation is employed with Eq. (4), the resulting 
difference equation becomes 

ri- 1 = -(P/J’), (ri+ 1)/2, (5) 

where ri = Axi+ ,/Ax, and Ax; = xi - xi-, . 
The most basic constraint on the grid spacing ratio, ri in Eq. (5), is that it must 

be positive for any value of i, and this leads directly to 

I (P/‘J2)iI = I (‘+‘c/W)iI < 2. (6) 

A useful restriction is to place a limit on the maximum value of ri, such as K or 

l/K<ri< K. (7) 



42 MATSUNO AND DWYER 

Combining Eqs. (6) and (7) yields the following constraint on the difference 
equation: 

One of the most useful forms for the adaptive weighting function w  is that form 
where it depends on the first derivative of the variable, f, to be adapted. First 
derivative adaption limits the percentage change off and also forces the grid to be 
aligned perpendicularly to the gradient off. Application of first derivative adaption 
to many different types of problems, Refs. [3-61, has shown that it is very accurate 
and can considerably increase the efficiency of the method of solution of the 
problem solved. A useful form of first derivative adaption is the total arclength of 
the variablef, and it can be written as 

w= [l +b*(f,)‘]“’ (9) 

which leads directly from Eq. (8) to the value of h, as 

where the minimum value of (b,)i has to be chosen. (That is b, =min[(b,)i].) 
For the majority of problems occurring in the physical sciences first derivative 

adaption along with the restriction on the grid spacing ratio is adequate to obtain 
good adaption on the desired function. At the present time the numerical 
algorithms available are usually not robust enough to handle adaption on the 
second derivative of a dependent variable. The reason for this behavior is caused by 
the second derivative being poorly approximated, and adaption on faulty infor- 
mation can quickly lead to complete deterioration of the numerical algorithm. If a 
very robust algorithm is available for the solution of the equation forf, then second 
derivative adaption can be accomplished with the present methods. A useful 
formulation containing both the first and second derivatives of the function f is 

w  = w, w* = [ 1 + b,(f,)‘]“’ [l + b2(fxx)*]“*. (11) 

When this weighting function is utilized in the Poisson equation for the x positions, 
the results are 

P/J* = w,Iw = w,~/w~ + w,~/w, 

or, with the use of the grid spacing ratio restriction, 

/P/J’/ = [(PI/J2 + P2/J2)il < 2(K- l)/(K+ 1). 

The relative importance of first and second derivative adaption can be controlled by 
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introducing the two constants K, (first derivative) and K, (second derivative) and 
the relative weighting parameter 8, which have the properties 

K, +K2=2(K- l)/(K+ l), 

where K, =0[2(K- l)/(K+ l)] and K,= (1 -0)[2(K- l)/(K+ l)]. 
The values of h, and h2 in w  follow in the same way as the minimum values 

obtained from the equations 

APPLICATION OF THE ONE-DIMENSIONAL METHOD 

In order to show the usefulness of the formulation just derived it will be applied 
to the “blind” approximation of a difficult function. The adjective “blind” has been 
employed, since the Poisson equation utilized to iteratively calculate the adapted 
values of the grid x, only knows discrete values off (the same as would be returned 
by a finite difference equation). The function chosen is asymptotically steep and has 
radically different values of the first and second derivatives. This function is 

f(x) = [ 1 + sign(x - x,.){ 1 - exp( -aX2 + l/2)$1/2, 

where X= 1/(2a)“’ + Ix-x, 1, a = 500, x,. = t, and 

sign(x - x,.) = 1 if XZX, 

sign(x-x,)= -1 if x<x,.. 

(14) 

Shown in Figs. (1) through (4) are examples of grid adaption and function 
approximation for both first and second derivative weighting functions used for the 
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FIG. 1. Adaptive grid and first derivative. Approximation 0 = 1 and K = 2. 
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FIG. 2. Adaptive grid and second derivative, Approximation 0 = 1 and K = 2. 

function W. Figures (1) and (2) exhibit the converged grid with only first derivative 
adaption for w  (0 = 1 ), and the exact and central difference approximations to both 
the first and second derivatives of the above asymptotic function. The comparison 
between these central difference approximations on this stretched grid, K= 2, and 
the analytic evaluations of the function are extremely good for the 41 grid points 
utilized. It should also be noted that the convergence to the grid shown only 
required 15 iterations of the Poisson equation to obtain the values shown in the 
figures. For every iteration the value of bl was updated, as well as the function. For 
values of a in equation (14) that were greater than 500 there was some diffkulty 
with the convergence of the Poisson equation (it is even possible that the 
convergence of the grid is not obtained). In general, it can be said that it is more 
difficult to solve the Poisson equation for grid generation than to solve the integral 
equation employed in Ref. [4], and that better methods for obtaining the solution 
of the grid Poisson equation should be developed. 

If the value of the weighting function, 8, between first and second derivative 
adaption is changed to one-half, the comparison between analytic and calculated 
results, Figs. (3) and (4), have the same general level of approximation, and it can 
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FIG. 3. Adaptive grid and first derivative. Approximation 0 = 4 and K = 2. 
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FIG. 4. Adaptive grid and second derivative. Approximation 0 = f  and K = 2. 

be said that they seem to be of equal quality. This result exhibits the very common 
conclusion that first derivative adaption by itself usually does a very good job on 
the entire function, when it is’ combined with a reasonable finite difference 
approximation. This fact in conjunction with the realization that second derivative 
adaption usually causes convergence problems leads one to recommend the use of 
second derivative adaption only in very unusual circumstances. It should also be 
remembered that most finite difference approximations to partial differential 
equations are not nearly as robust as knowing the function exactly, and do not 
interact as well with grid motion. 

The use of adaptive methods with the present formulation does not preclude the 
use of purely geometric control terms in the Poisson equation for grid generation. 
For example, if it is required to have a geometrically expanding grid (this type of 
grid variation is usually applied to resolve boundary layers), as well as grid 
adaption, then the total control function P becomes 

IW21 = I(Pa + P,)/J21 < 2(K- 1 )/(K+ l), 

where P,= -2(r,- l)/(rg+ 1) for r,> 1. 

(15) 
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FIG. 5. Adaptive grid and first derivative. Approximation 0 = 1, K=4, and rg= 1.075. 
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FIG. 6. Adaptive grid and second derivative. Approximation 0 = 1, K = 4, and rp = 1.075. 

When this formulation is used with first derivative adaption the results again are 
very good with the same number of total grid points (Figs. 5,6). Of course, if more 
grid points were added, it would be possible to improve the results to the levels of 
Figs. l-4. In general, additional grids are needed for each high gradient region in a 
calculation, but it is seen from the above results that many different types of high 
gradient regions can be nicely resolved with the present methods. 

THREE-DIMENSIONAL FORMULATION 

A very attractive feature of the above formulation is that it can readily be exten- 
ded to a multi-dimensional form. The form which has been chosen for the present 
results has been to adapt along the three physical arclength directions defined by 
the generalized coordinates 5, q, and [, Fig. 7. The three-dimensional form of the 
Poisson equations are 

5.x, + ryy + 4,z = P(5, ‘I? i) 

8,x + ily, + ?2, = ecr, ‘I, 0 

Lx + iy.,, + i:: = N5, % 0, 

where P= w~/[(s,)~ w], Q = M$/[(s;)’ w’], and R = w;/[(.s;)~ w”]. 

FIG. 7. Primary arclengths and generalized coordinates. 
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These equations can be inverted to give forms which can be used for numerical 
solution to obtain the grid 

D’x = -(Px, + Qxv + Rxc)/J2 

D’Y = -(PYs + QY, + Ryi)lJ* 

D’z = -(Pq + Qzl, + Rq)/J’, 

where the differential operator D’ is defined as 

and the coefficients CC, /I, y, K, Iti, p, and J are functions of the coordinate transfor- 
mation. 

For those readers who are familiar with the excellent research efforts based on a 
variational principle, Refs. [ 1, 6, 71, the present formulation may seem to be 
somewhat different, but in reality it is almost identical to that proposed by Winslow 
[6]. If the gradient operator, which acts on the adaption variable w  in the Winslow 
formulation, is expanded in the generalized coordinates tJ, q, and [, it can be shown 
that the formulations are almost identical. For example, wrJx in the Winslow for- 
mulation can be shown to be equal to W~XJS~ in the present work with the use of 
some calculus and the definition of the arclength variable (similar results can be 
obtained for all nine source terms in the equations for x, y, and z given above). For 
the formulations to be identical the adaption functions w, w’, and w” must be the 
same along all three arclengths, but this possible flexibility in w  exhibits clearly the 
use of different adaption functions along different physical directions. In many 
applications the dominant physics is strongly modified by boundaries or external 
force fields, and there are definite advantages to changing the adaption function 
along the three independent directions. 

The weighting functions in, w’, and u!” contain the information on the adaption 
criteria to be used in a given problem, and typical first and second derivative 
formulations along the three arclength directions are 

u’= [l +h,(F.v)2]“2 [l +b,(FS,Y)2]“2 

w’ = [ 1 + 6;(FS)*]1’2 [ 1 + b;(&$)2] “2 

w” = [ 1 + b;(&,..)2]“2 [ 1 + &(F,,J]“? 

In general, all of the above comments on the usefulness of first and second 
derivative adaption apply to the three-dimensional case, but with an increased 
sensitivity due to the difftculties with most three-dimensional algorithms. The 
additional question of grid orthogonality also must be addressed for the multi- 
dimensional cases, and this places a significant restriction on adaption. As has been 
shown in a previous paper, Ref. [6], orthogonality and grid adaption cannot be 
strictly applied simultaneously, and they must be traded off against each other. 

581/77/l-4 
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However, orthogonality is a geometric constraint, and can be best handled by the 
introduction of a weighting function P,, which will compete with the adaption 
source term. In most problems it is best that adaption be applied along a coor- 
dinate direction for which diffusion or an elliptic variable is important, and 
orthogonality emphasized along the perpendicular directions. 

The constants b, and 6, in the weighting functions for the first and second 
derivatives, respectively, are determined in a fashion similar to the one-dimensional 
case. If K is the overall grid spacing ratio, and 0 the parameter determining the 
relative importance of first and second derivative adaption, the restrictions on 6, 
and b, become 

b, G ‘KlWJ;I - 2K,V’J21 

b, G 2K2lCIV’J:I - 2K2(f’J21 

with K, + K2 = f3[2(K- l)/(K+ l)] + (1 - O)[Z(K- l)/(K+ l)]. 
Of course the optimization parameters in the other coordinate directions are free 

to be chosen independently and should be chosen independently in order to use the 
grid more efficiently. 

THREE-DIMENSIONAL APPLICATIONS 

The test problem chosen to evaluate the present formulation for the three-dimen- 
sional case is similar to the one-dimensional problem previously described. The 
asymptotic function used for adaption is given as 

F(x, y, z) = [ 1 + sign(r - rC){ 1 - exp( - ap2 + 1/2)}]/2, 

where r = (x2 + y2 + z2)‘j2 6 1 and p = 1/(2a)‘j2 + Ir - rrl, a = 500, and rC = l/2. 

ADAPTED GRID 

FIG. 8. Three-dimensional adaptive grid. 
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ADAPTED GRID 

FIG. 9. Three-dimensional adaptive grid. 

The adapted grid that resulted from the same “blind” numerical experiment is 
shown in Figs. 8-10 for three different perspective views. The initial grid for the 
start of adaption was a thirty-one cube uniform grid, which was provided with 
discrete values of the function F. Based on these values of the function F, the 
numerical first and second derivatives were formed and the Poisson equations 
solved with the use of Jacobi line relaxation. The converged solution required 38 
total iterations, and it can be seen from the figures that the symmetry of the 
function and the grid are well matched. 

The comparison with the first and second derivatives is almost as good as the 
one-dimensional grid with one-half the number of grid points, but it does suffer 

ADAPTED GRID 

FIG. 10. Three-dimensional adaptive grid. 
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FIG. 11. Adaptive grid and second derivative. Approximation f3 = 1 and K= 2 for a 3D case. 

slightly from the nonorthogonality of the grid (the reason for one-half the number 
of grid points comparison is due to the fact that the spherical function utilized 
causes two high gradient regions along any axis in space). A typical comparison of 
the first and second derivatives along the x-axis shown in Figs. 11 and 12. When the 
difficulty of the function and the sparse number of grid points is considered, it is 
actually quite promising for the use of adaptive gridding techniques. In general the 
use of nonorthogonal grids does degrade present central difference approximations 
in viscous flow regions, but the benefits of adaption more than offset these losses. In 
the near future there does seem to be good hope of increased storage and speed 
advances which offer the possibility of overcoming most of the present problems. It 
is the present authors’ opinion that the adaptive method presented in this paper will 
be a useful and efficient way of helping to solve the difficult and ever more complex 
problems of the future. 
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FIG. 12. Adaptive grid and second derivative. Approximation 0 = 1 and K = 2 for a 3D case, 
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CONCLUSIONS 

The present paper has formulated a general elliptic solver method and calculated 
a series of examples for adapted grids on an asymptotic function which has very 
different first and second derivatives. The results of the study have been very 
promising and the following conclusions can be made: 

1. The use of Poisson equations with source terms to adapt the grid on 
various properties of the dependent variable of a transport equation can be 
formulated for multi-dimensional grids. However, there are restrictions which 
must be applied to force the grid to have a positive grid spacing ratio. If these 
restrictions are not observed the use of elliptic grid generation will produce negative 
Jacobians. 

2. Both first and second derivative adaption can be accomplished in a similar 
fashion with the use of appropriate weighting functions. The use of first derivative 
adaption is the most robust and useful form, and it also gives the major share of the 
accuracy for a function approximation. The use of second derivative adaption 
improves the approximation of the function but usually influences the convergence 
of the adaptive grid equation and/or the solution algorithm in a negative way. 

3. The use of source terms in the Poisson equations to adapt the grid does 
not preclude the use of geometric source terms to give the grid desired properties 
near solid boundaries or expansions to a freestream condition. In fact, one of the 
major advantages of the present adaptive method is that it is totally compatible 
with the previous geometric methods of grid generation. 

4. With the use of exact test functions to generate adaptive grids the 
convergence of the line Jacobi method for the solution of the Poisson equations 
was excellent, even for the three-dimensional problems solved. However, if the 
numerical algorithm employed to solve the transport equation is marginal, then 
there can be a negative interaction between the numerical algorithm and grid 
adaption. 

5. The major problem to be treated in the future is the nonorthogonal and 
badly skewed grids that are generated by function variation and complex geometry. 
This problem can be severe since orthogonality and adaption cannot be applied 
simultaneously. In many physical problems this interaction is reduced since 
diffusion and convection are perpendicular to each other at high Reynolds number. 
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